Главная » 2016 » Январь » 24 » Городская олимпиада по математике 6 класс
14:01
Городская олимпиада по математике 6 класс
1.Четверо детей сказали друг о друге так.
Маша: Задачу решили трое: Саша, Наташа и Гриша.
Саша: Задачу не решили трое: Маша, Наташа и Гриша.
Наташа: Маша и Саша солгали.
Гриша: Маша, Саша и Наташа сказали правду.
Сколько детей на самом деле сказали правду?

Решение

Высказывания Маши и Саши противоречат друг другу, следовательно, Гриша наверняка солгал. Далее возможны два случая.
1) Наташа сказала правду. Тогда солгали и Маша, и Саша, то есть правду сказал один ребёнок.
2) Наташа солгала. Тогда правду сказала либо Маша, либо Саша. И в этом случае сказал правду один ребёнок.

Ответ

Один ребёнок.

2.Условие

На карте обозначены 4 деревни: A, B, C и D, соединённые тропинками (см. рисунок).

В справочнике указано, что на маршрутах A-B-C и B-C-D есть по 10 колдобин, на маршруте A-B-D колдобин 22, а на маршруте A-D-B колдобин 45. Туристы хотят добраться из Aв D так, чтобы на их пути было как можно меньше колдобин. По какому маршруту им надо двигаться?

Решение

Существует три возможных маршрута из A в D: 1) A-D; 2) A-B-D; 3) A-B-C-D.
Из того, что на маршруте A-B-D находятся 22 колдобины, следует, что на тропинке B-D их не больше, чем 22. Значит, из 45 колдобин маршрута A-D-B не меньше, чем 23 колдобины находятся на тропинке A-D. Таким образом, маршрут 2) выгоднее, чем маршрут 1).
Поскольку на маршруте A-B-C есть 10 колдобин, то на тропинке A-B их не больше 10. Значит, из двадцати двух колдобин маршрута A-B-D не менее двенадцати приходится на тропинку B-D. Но на участке B-C-D есть только 10 колдобин, поэтому он выгоднее, чем B-D.
Итак, маршрут 3) выгоднее маршрута 2).

Ответ

По маршруту A-B-C-D

3.Условие

Города A, B и C вместе с соединяющими их прямыми дорогами образуют треугольник. Известно, что прямой путь из A в B на 200 км короче объезда через C, а прямой путь из Aв C на 300 км короче объезда через B. Найдите расстояние между городами B и C.

Решение

Маршрут B-A-C (из B в C через A) на 500 км короче, чем маршрут B-C-A-B-C: длина отрезка BA на 200 км меньше длины маршрута B-C-A, а длина отрезка AC на 300 км меньше длины маршрута A-B-C. При этом второй маршрут отличается от первого на два отрезка BC. Значит,
BC = 500 : 2 = 250 км.

Ответ

250 км.

4.Условие

Четверо детей сказали друг о друге так.
Маша: Задачу решили трое: Саша, Наташа и Гриша.
Саша: Задачу не решили трое: Маша, Наташа и Гриша.
Наташа: Маша и Саша солгали.
Гриша: Маша, Саша и Наташа сказали правду.
Сколько детей на самом деле сказали правду?

Решение

Высказывания Маши и Саши противоречат друг другу, следовательно, Гриша наверняка солгал. Далее возможны два случая.
1) Наташа сказала правду. Тогда солгали и Маша, и Саша, то есть правду сказал один ребёнок.
2) Наташа солгала. Тогда правду сказала либо Маша, либо Саша. И в этом случае сказал правду один ребёнок.

Ответ

Один ребёнок.

5.Условие

Убирая детскую комнату к приходу гостей, мама нашла 9 носков. Среди любых четырёх носков хотя бы два принадлежали одному ребёнку, а среди любых пяти носков не более трёх имели одного хозяина. Сколько могло быть детей и сколько носков могло принадлежать каждому ребёнку?

Решение

Так как среди каждых четырёх носков хотя бы два принадлежали одному ребенку, то детей – не более трёх. Никому из детей не может принадлежать более трёх носков (иначе нашлись бы 5 носков, среди которых более трёх принадлежат одному хозяину).
Всего мама нашла 9 носков, поэтому детей не может быть меньше трёх. А значит, в комнате живут трое детей, и каждому принадлежат ровно по три найденных носка.

Ответ

Трое детей, каждому из них принадлежало по 3 носка.

6.Условие

Из 16 спичек сложен ромб со стороной в две спички, разбитый на треугольники со стороной в одну спичку (см. рисунок).

А сколько спичек потребуется, чтобы сложить ромб со стороной в 10 спичек, разбитый на такие же треугольники со стороной в одну спичку?

Решение

Первый способ. Подсчитаем количество треугольников со стороной в одну спичку, у которых спичка в основании расположена горизонтально (см. рис.).

Каждый такой треугольник является верхней половинкой маленького ромбика со стороной в одну спичку. В ромбе со стороной 10 таких ромбиков 10·10 = 100.
Так как никакие два из рассматриваемых треугольников не имеют общих спичек, то на них уйдёт 100·3 = 300 спичек. Если убрать все такие треугольники, то останутся только спички, составляющие две нижние стороны большого ромба. Их – 20, значит, всего потребуется
300 + 20 = 320 спичек.

Второй способ. Ромб со стороной в 10 спичек состоит из 100 маленьких ромбиков. На каждый из маленьких ромбиков уходит 5 спичек, поэтому на 100 ромбиков потребовалось бы 500 спичек, если бы некоторые из спичек не были границей двух ромбиков, а, значит, учтены дважды.
Найдем количество спичек, которые принадлежат только одному ромбику. Это – 40 спичек, образующих контур большого ромба, и 100 спичек, лежащих горизонтально. Следовательно, было 500 – 140 = 360 "двойных" спичек. Таким образом, потребуется 140 + 360 : 2 = 320 спичек.

Третий способ. Подсчитаем по отдельности спички, расположенные в каждом из трёх направлений. Параллельно двум сторонам ромба расположено ещё 9 отрезков, каждый из них (включая эти стороны), состоит из десяти спичек, итого: 110 спичек. Ещё 110 спичек лежат параллельно двум другим сторонам ромба. И ещё 100 спичек лежат горизонтально (это видно из предыдущих способов подсчёта, но можно сосчитать и непосредственно: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1).

Ответ

320 спичек.
Категория: Математика | Просмотров: 230 | | Рейтинг: 0.0/0
Всего комментариев: 0
avatar